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1 Introduction

The processes in collisions of e+e− beams at moderate high energies with detection of
the final particles moving in centre–of–mass system (c.m.s.) at large angles are the sub-

ject of close attention at meson factories, such as VEPP–2M (Novosibirsk) [1], DAΦNE

(Frascati) [2], BEPC/BES (Beijing) [3]. The processes of pure quantum electrodynamics

(QED) nature provide an important background for studies of subtle mesons properties.

Besides, they may be used for a calibration and monitoring. Because of large cross-sections

of the lowest order processes, radiative corrections (RC) to them are to be included in

the consideration.

In our previous paper [4] we had considered the QED processes e+e− → e+e−(γ),
µ+µ−(γ), γγ(γ). There we developed an approach for precise accounting of radiative
corrections to differential distributions. The part of RC, describing the emission of hard

additional photons was presented in the form convenient for imposing experimental con-

ditions of the final particle detection. The contribution of higher orders of perturbation

theory was considered in the leading logarithmical approximation. That was done by

means of the structure function approach, writing a cross-section in the Drell-Yan form.

In this paper we apply the same approach to processes e+e− → π+π−(γ), KLKS(γ),
K+K−(γ), considering the pseudoscalar mesons as point–like objects. The effects of
strong interaction of hadrons in the final state are parametrized by introducing form

factors which are to be measured in an experiment. We assume as usually that vacuum

polarization corrections (by hadrons and leptons) are also included in the form factors.

The virtual and soft real photon emission corrections are calculated in the O(α) order
exactly. This permits us to keep explicitly the leading (containing large logarithm L =

ln(s/m2e), s = 4ε
2 is the squared total energy in c.m.s.) and next–to–leading terms.

The latters are regarded further as K–factor terms in the Drell–Yan representation for a
cross-section.
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Considering hard photon emission we extract contributions, containing large logarithm

L, we distinguish the collinear kinematics of hard photon emission and the semi–collinear

ones, which do not give rise to L. An auxiliary parameter, a small polar angle θ0 � 1
with respect to the direction of the initial beams, is introduced for this purpose. The

terms containing photon softness parameter ∆ = ∆ε/ε (∆ε is the maximal energy of

a soft (in c.m.s.) undetected photon) and the ones containing θ0 from the contribution

of the collinear region are regarded as compensating terms. When they being summed

with the contribution of the semi–collinear region (with the relevant restrictions imposed)

provide their finiteness in the limit ∆, θ0 → 0.
This paper is organized as follows. In the second Section we consider the process of

charged pion production. The explicit formulæ (we keep pion mass exactly) for the lowest

order virtual and soft real photon emission are presented. The charge–even and charge–

odd contributions are given separately. The latter quantity permits us to obtain the charge

asymmetry which can be measured. We put also the explicit formula for the differential

cross-section of hard photon emission. In Sect. 3 a similar consideration is given for

the case of neutral and charged kaon production near the threshold. In Conclusions we

discuss the formulæ obtained and their precision. The results are illustrated numerically

in Figures. In the Appendix we discuss the structure of form factors and give the explicit

expressions for the vacuum polarization operator.

2 Pion pair production

In the Born approximation the differential cross-section of the process

e+(p+) + e
−(p−) → π+(q+) + π

−(q−) (2.1)

has the form
dσ0
dΩ
(s) =

α2β3

8s
sin2 θ |Fπ(s)|2, (2.2)

β =
√
1−m2π/ε2, s = (p+ + p−)2 = 4ε2, θ = p̂−q− .

The pion form factor Fπ(s) takes into account vertex virtual corrections due to strong

interactions and vacuum polarization by leptons and hadrons (including vector–meson

resonances) [5] (see Appendix). We would like to underline that in our approach QED

corrections are not included into Fπ(s). One has to take the form factor from an experi-

ment after an extraction of QED radiative corrections.

Calculating QED radiative corrections we will consider pion as a point–like particle.

We distinguish form–factor–type one–loop Feynman diagrams and the box–type ones.

The QED form factors are taken as FQEDe,π (s) = 1 + F
(1)
e,π +O(α2). Using the known first

order contributions to the electron and pion QED form factors

Re F (1)e (s) =
α

π

[(
ln
me
λ
− 1

)
(1− L)− 1

4
L2 +

π2

3
− 1
4
L

]
, L = ln

s

m2e
, (2.3)
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Re F (1)π (s) = 1 +
α

4π

{
4
(
ln
mπ

λ
− 1

)(
1− 1 + β

2

2β
lβ

)
(2.4)

+
1 + β2

2β

[
−2 ln

(
4

1− β2
)
lβ + ln

2 1− β
2
− ln2 1 + β

2

− 2lβ ln β − 2Li2
(
−1− β
2β

)
+ 2Li2

(
1− β
2β

)]}
, lβ = ln

1 + β

1− β ,

and the contribution due to soft photon emission [6, 7], we obtain for the charge–even

part of the differential cross-section the following formula:

dσB+S+Veven

dΩ
=
dσ0
dΩ

{
1 +
2α

π
[A +B]

}
, (2.5)

with:

A = (L− 1) ln ∆ε
ε
+
3

4
(L− 1) + a, a =

π2

6
− 1
4
,

B =

(
1 + β2

2β
ln
1 + β

1− β − 1
)
ln
∆ε

ε
+ b(s),

b(s) = −1 + 1− β
2β
ρ+
1

β
ln
1 + β

2
+
1 + β2

2β

[
−Li2

(
−1− β
1 + β

)

+Li2

(
1− β
1 + β

)
− π

2

12
+ ρ ln

1 + β

2
− 2ρ ln β + 3

2
ln2
1 + β

2

− 1
2
ln2 β − 3 lnβ ln 1 + β

2
+ ρ+ 2 ln

1 + β

2

]
,

ρ = ln
s

m2π
, Li2(x) = −

x∫
0

dt

t
ln(1− t).

Considering the box–type diagrams, one has to note, that the corresponding integral

over the loop momentum is convergent. So, the contribution of large virtual momenta is

negligible, and we do not need to consider the Wilson operator expansion there. Box–type

diagrams and the interference of soft photon emission from electrons and pions give rise

for the charge–odd contribution

dσS+Vodd

dΩ
=
dσ0
dΩ

2α

π

{
2 ln
∆ε

ε
ln
1− βc
1 + βc

+ k(c, s)
}
, (2.6)

with:

k(c, s) =
1

2
l2− − Li2

(
1− 2βc+ β2
2(1− βc)

)
+ Li2

(
β2(1− c2)
1− 2βc+ β2

)

−
1−β2∫
0

dx

x
f(x)

(
1− x(1− 2βc+ β

2)

(1− βc)2
)− 1

2

+
1

2β2(1− c2)
{[
1

2
l2− − (ρ+ l−)L− + Li2

(
1− β2
2(1− βc)

)]
(1− β2) +
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+ (1− βc)
[
−l2− − 2Li2

(
1− β2
2(1− βc)

)
+ 2(ρ+ l−)L− − (1− β)

2

2β

(
1

2
ρ2 +

π2

6

)

+
1 + β2

β

(
ρ ln

2

1 + β
− Li2

(
−1− β
1 + β

)
+ 2Li2

(
1− β
2

)]}
− (c→ −c),

f(x) =
(

1√
1− x − 1

)
ln

√
x

2
− 1√
1− x ln

1 +
√
1− x
2

,

l− = ln
1− βc
2
, L− = ln

(
1− 1− β2
2(1− βc)

)
.

The charge asymmetry in a quasi–elastic case has the form

η =
dσ(c)− dσ(−c)
dσ(c) + dσ(−c) =

dσS+Vodd

dσ0
. (2.7)

In the ultra–relativistic case (β → 1) we obtain

(η)asympt =
2α

π

[
4 ln(tg

θ

2
) ln
∆ε

ε
+

(
2− 1

cos2 θ
2

)
ln2(sin

θ

2
) (2.8)

−
(
2− 1

sin2 θ
2

)
ln2(cos

θ

2
) + Li2(cos

2 θ

2
)− Li2(sin2 θ

2
)
]
, ε� m.

This expression coincides with the result of Brown and Mikaelian [8].

The matrix element of the process accompanied by hard photon emission

e−(p−) + e+(p+) −→ π−(q−) + π+(q+) + γ(k) (2.9)

can be presented in the following form:

Me
+e−→π+π−γ = −i(4πα) 32

{
v̄

[
γν

(
p+e

χ+
− p−e
χ−

)
+
γνk̂ê

2χ−
− êk̂γν
2χ+

]
× (2.10)

× u(q− − q+)νFπ(s1)
s1

+ v̄γρu
Fπ(s)

s
T πρσe

σ(k)

}
,

p− + p+ = q− + q+ + k, s = (p− + p+)2, s1 = (q− + q+)2, χ± = p±k.

The tensor T πρσ describes the transition of a heavy photon into the system of two real

pions and a real photon:

γ∗(q)→ π+(q+) + π−(q−) + γ(k), q2+ = q2− = m2π, q2 = s, k2 = 0. (2.11)

Regarding CPT and gauge invariance the tensor can be written in the general form

T πρσ = a1L
(1)
ρσ + a2L

(1)
ρσ + a3L

(1)
ρσ + kσOρ, qρT πρσ = 0, k

σT πρσ = 0. (2.12)

The last term (∼ kσ) is irrelevant here. Tensors L(i) read
L(1)ρσ = qk gρσ − kρqσ, L(2)ρσ = qk QρQσ − kQ (qσQρ +Qσkρ) + (kQ)2gρσ,
L(3)ρσ = kQ (q2gρσ − qρqσ) +Qσ(qk qρ − q2kρ), Q =

1

2
(q+ − q−). (2.13)
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For the case of charge pion production, which is considered below, we used the approxi-

mation of point–like pions, where

T πρσ → T (0)ρσ =
1

2χ′+
(q−−q+−k)ρ(−2q+−k)σ+ 1

2χ′−
(q−−q++k)ρ(2q−+k)σ−2gρσ , (2.14)

χ′± = q±k, a
(0)
1 = −

2

χ′− + χ′+

(
χ′−
χ′+
+
χ′+
χ′−

)
, a

(0)
2 =

16

χ′−χ′+
, a

(0)
3 = 0 .

In reality some vector–meson resonance intermediate states give rise of contributions to

the tensor.

The differential cross-section of the process with hard photon emission reads

dσe
+e−→π+π−γ =

α3

2π2s2
(R1 +R2 +R3)dΓ, (2.15)

with:

R1 =
s

s21
|Fπ(s1)|2(p+Qp−Q)

[
p+p−
χ+χ−

− 2
χ−
− m

2
e

χ2−

+
χ+

p+p−

(
1

χ−
+
m2e
χ2−

)
+ (p+ ↔ p−)

]
,

R2 =
{
1

s
|Fπ(s)|2

[
q+q−
χ′+χ′−

− m2π
(χ′+)2

+ (q+ ↔ q−)
]

+
2

s1
Re (Fπ(s)F

∗
π (s1))

(
p+

χ+
− p−
χ−

)(
q+

χ′+
− q−
χ′−

)}
(p+Qp−Q),

R3 =
s

s21
|Fπ(s1)|2

[
(p+Qk−Q)
χ−

+
(p−Qk+Q)
χ+

+
2Qk

χ+χ−
(p+Qp−k)

]

+
1

s
|Fπ(s)|2

[
− χ+χ−
2χ′+χ′−

q+q− − m2π
4(χ′+)2

(
(p+kp−k) + 2(p+Qp−k)

+2(p+kp−Q)
)
+
1

χ′+

(
χ+p−q+ + χ−p+q+ + 2(p−Qp+q+)

)
+ (q+ ↔ q−)

]

+
1

s
Re (Fπ(s)F

∗
π (s1))

{
(p+Qp−k)

q+

χ′+

(
p+

χ+
− p−
χ−

)

+2(p+Q− p−Q)− 1
χ′+
((p+Qq+k)− (p−Qq+k))

+
2Qk Qp+ p−q+
χ′+χ−

− 2Qp− Qk p+q+
χ′+χ+

− Q
2 χ+ q+p−
χ′+χ−

+
Q2 p+q−
χ′+

+
Q2 χ− p+q+
χ′+χ+

− Q
2 p−q−
χ′+

− (q+ ↔ q−)
}
,

k± = k − p± χ∓
p+p−

, Q =
1

2
(q+ − q−) ,

t = −2p−q−, t1 = −2p+q+, u = −2p−q+, u1 = −2p+q−,
dΓ =

d3q+d
3q−d3k

q0−q0+k0
δ(4)(p− + p+ − q− − q+ − k),

5
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where we use the notation:

(abcd) =
1

4
Sp âb̂ĉd̂ = (ab) (cd) + (ad) (bc)− (ac) (bd).

After algebraic transformations one can get a more compact expression:

dσe
+e−→π+π−γ =

α3

32π2s
(Rs1s1 +Rss +Rss1) dΓ, (2.16)

with:

Rs1s1 = |Fπ(s1)|2
{
A
4s

χ−χ+
− 8m

2
e

s21

(
t1u1
χ2−
+
tu

χ2+

)
+m2π∆s1s1

}
,

Rss = |Fπ(s)|2
{
A
4s1
χ′−χ′+

− 8m
2
π

s2

(
tu1

(χ′+)2
+
t1u

(χ′−)2

)
+m2π∆ss

}
,

Rss1 = Re (Fπ(s)F
∗
π (s1))

{
4A

(
u

χ−χ′+
+
u1

χ+χ
′−
− t

χ−χ′−
− t1

χ+χ
′
+

)
+m2π∆ss1

}
,

A =
tu+ t1u1
ss1

, ∆s1s1 = −
4

s21

(t+ u)2 + (t1 + u1)
2

χ+χ−
,

∆ss =
2m2π(s− s1)2
s(χ′−χ′+)2

+
8

s2χ′+χ′−
(tt1 + uu1 − s2 − ss1),

∆ss1 =
8

s1

(
t

χ−χ′−
+
t1

χ+χ
′
+

− u

χ−χ′+
− u1

χ+χ
′−

)

+
8

ss1

[
2(t1 − u) + u1 − t

χ′−
+
2(t− u1) + u− t1

χ′+

+
u1 + t1 − s
2χ−

(
u

χ′+
− t

χ′−

)
+
u+ t− s
2χ+

(
u1

χ′−
− t1
χ′+

)]
.

In the ultra–relativistic limit (s � m2π) one has to drop in the above formula the terms
∆ss, ∆s1s1, ∆ss1.

For numerical estimations it is useful to separate the most singular part of the differe-

ntial cross-section and to integrate it analytically. We mean the contribution due to hard

collinear photon emission by electrons. We suggest the following procedure. Let us define

narrow cones surrounding the momenta of the initial particles. Their opening angle is

defined by an auxiliary parameter θ0. The vertex is taken in the interaction point. A

photon emitted by the electron or the positron inside the cones (k̂p− < θ0 or k̂p+ < θ0)
will be called as a collinear one. On the parameter θ0 one has to impose the restrictions

1� θ0 � me
ε
. (2.17)

Integrating inside the cones we drop all terms proportional to θ20 [9]. After simple calcula-

tions one comes to a formula, where a factorization of a shifted Born cross-section can be

found. So, the process of collinear photon emission is factorized with respect to the hard

process of the annihilation into pions. This is the manifestation of the known factoriza-

tion theorem [10]. Indeed, we obtain the factorization of large logarithm L = ln(s/m2e)

6
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with an accompaniment of several non–leading terms. The dependence on the auxiliary

parameter θ0 should cancel in the sum with the contribution of the integration outside

the cones. We will keep ln(θ20/4) terms and use them below as a compensator.

The shifted cross-section dσ̃(z1, z2) reads

dσ̃(z1, z2) =
α2

4s

(Y 21 −m2π/ε2)3/2
z21z

2
2

(1− c2)dΩ|Fπ(sz1z2)|2
z1 + z2 + (z2 − z1)(1−m2π/(ε2Y 21 ))−1/2c

, (2.18)

where z1 and z2 are energy fractions of the almost real electron and positron after the

emission of collinear photons. The energy fractions Y1,2 of the final pions can be found

from the following kinematical relations:

y21,2 = Y
2
1,2 −

4m2π
s
, z1 + z2 = Y1 + Y2, z1 − z2 = y1c− + y2c+,

y1
√
1− c2− = y2

√
1− c2+, c− ≡ c, Y1,2 =

q0−,+
ε
, c+ = cos p̂−q+ ,

Y1 = −4m
2
π

s

(z1 − z2)c
2z1z2 + [4z

2
1z
2
2 − 4(m2π/s)((z1 + z2)2 − (z1 − z2)2c2)]1/2

+
2z1z2

z1 + z2 − c(z1 − z2) .

The leading contributions to cross-section, containing large logarithm L, as may be

recognized, combine into the kernel of Altarelli–Parisi–Lipatov evolution equation:

dσ =
∫
dz1dz2Dγ(z1)Dγ(z2)dσ̃0(z1, z2),

Dγ(z) = δ(1− z) + α
2π
(L− 1)P (1)(z) +

(
α

2π

)2 (L− 1)2
2!

P (2)(z) + . . . , (2.19)

P (1)(z) = lim
∆→0

(
δ(1− z)(2 ln∆ + 3

2
) + Θ(1− z −∆)1 + z

2

1− z
)
,

P (2)(z) =

1∫
x

dt

t
P (1)(t)P (1)

(
z

t

)
.

This formula is valid in the leading logarithmical approximation. We will modify it by

including nonleading contributions and using the smoothed exponentiated representation

for structure functions [11]:

D(z, s) = Dγ(z, s) +De+e−(z, s), (2.20)

Dγ(z, s) = 1

2
b

(
1− z

) b
2
−1[
1 +
3

8
b+
b2

16

(
9

8
− π

2

3

)]
− 1
4
b(1 + z) +

1

32
b2
(
4(1 + z) ln

1

1− z +
1 + 3z2

1− z ln
1

z
− 5− z

)
,

De+e−(z, s) = 1

2
b

(
1− z

) b
2
−1[
− b

2

288
(2L− 15)

]

+
(
α

π

)2 [ 1

12(1− z)
(
1− z − 2me

ε

) b
2
(
ln
s(1− z)2
m2e

− 5
3

)2

7



J
H
E
P
1
0
(
1
9
9
7
)
0
0
6

×
(
1 + z2 +

b

6

(
ln
s(1− z)2
m2e

− 5
3

))
+
1

4
L2
(
2

3

1− z3
z
+
1

2
(1− z)

+ (1 + z) ln z
)]
Θ(1− z − 2me

ε
), b =

2α

π
(L− 1).

In comparison with the corresponding formula in Ref. [11] we shifted the terms, arising

due to virtual e+e− pair production corrections, from Dγ into De+e−.
The final expression for the corrected cross-section reads as follows:

dσ =

1∫
zmin

dz1

1∫
zmin

dz2D(z1, s)D(z2, s)dσ̃(z1, z2)
[
1 +
2α

π
(k(c, sz1z2)

+ b(sz1z2) + a)
]
Θcut(z1, z2) +

[
α3

2π2s2

∫
k0>∆ε

k̂p±>θ0

R1

∣∣∣∣
m2e=0
dΓ Θ

(5)
cut

+
α

π

1∫
∆ε/ε

dx

x

(
1− x+ x

2

2

)
ln
θ20
4

(
dσ̃(1−x, 1)Θcut(1−x, 1)

+ dσ̃(1, 1− x)Θcut(1, 1− x)
)]
+

[
α3

2π2s2

∫
k0>∆ε

R2dΓ Θ
(5)
cut

+
α

π
2 ln
∆ε

ε
dσ̃(1, 1)

(
2 ln
1− βc
1 + βc

+
1 + β2

2β
ln
1 + β

1− β − 1
)]

+
α3

2π2s2

∫
R3dΓ Θ

(5)
cut, zmin =

2mπ
2ε−mπ . (2.21)

Quantities a, b and k are defined in Eqs. (2.5, 2.6). Schematically this expression can be

written as

dσ = dσ(1) + [dσ(2) + C(2)] + [dσ(3) + C(3)] + dσ(4), (2.22)

where quantities C(2,3) denote compensators; and terms dσ(2,3,4) denote integrals of R1,2,3,

respectively. Starting with Eq. (2.16) we can replace in the above expression quantities

Ri in the following way:

R1

∣∣∣∣
m2e=0

→ s
8
Rs1s1

∣∣∣∣
m2e=0
, R2 → s

8
(Rss +Rss1), R3 → 0. (2.23)

Experimental conditions of the final particle detection are encoded by step functions

Θcut(z1, z2) (for the two–particle final state kinematics) and Θ
(5)
cut (for the three–particle

one). They can be imposed explicitly by introducing the restriction of the following kind:

Θcut = Θ(Y1 − yth)Θ(Y2 − yth)Θ(sin θ+ − sinΨ0)Θ(sin θ− − sinΨ0), (2.24)

where ythε = εth is the energy threshold of the detectors, angle Ψ0 determines the dead

cones around beam axes unattainable for detection. Angles θ± define the polar angles of

8
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the pions. More detailed cuts can be implemented in a Monte Carlo program [12], using

the formulæ given above.

There is a peculiar feature in the spectrum of hard photons. Namely in the end of the

spectrum the differential cross-section is proportional to the factor

I(s1) =
1

s1

(
1− 4m

2
µ

s1

)3/2
, (2.25)

which defines a certain peak. It comes from the Feynman diagrams describing the emission

by the initial particles [13].

3 Kaon pair production near threshold

In the case of KLKS meson pair production the differential cross-section in the Born

approximation reads
dσ0(s)

dΩL
=
α2β3K
4s
sin2 θ |FLS(s)|2. (3.1)

Here, as well as in the case of pions production, we suggest that the form factor FLS
includes also the vacuum polarization operator of the virtual photon. Quantity βK =√
1− 4m2K/s is the K–meson velocity in the centre–of–mass frame, and θ is the angle
between the directions of motion of the long living kaon and the initial electron.

The corrected cross-sections has the form:

dσe
+e−→KLKS(s)
dΩL

=

∆∫
0

dx
dσe

+e−→KLKS
0 (s(1− x))

dΩL
F (x, s), (3.2)

where (see Ref. [11])

F (x, s) = bxb−1
[
1 +
3

4
b+
α

π

(
π2

3
− 1
2

)
− b

2

24

(
1

3
L− 2π2 − 37

4

)]
− b

(
1− x
2

)
+
1

8
b2
[
4(2− x) ln 1

x
+
1

x
(1 + 3(1− x)2) ln 1

1− x − 6 + x
]

+
(
α

π

)2 { 1
6x

(
x− 2me

ε

)b [
(2− 2x+ x2)

(
ln
sx2

m2e
− 5
3

)2
+
b

3

(
ln
sx2

m2e
− 5
3

)3]

+
1

2
L2
[
2

3

1− (1− x)3
1− x + (2− x) ln(1− x) + x

2

]}
Θ(x− 2me

ε
). (3.3)

We omitted a small contribution (proportional to α(mφ−2mK)/mφ) from photon emission
by the final particles. Note that at higher energies this effect is extremely interesting: it

may shed light on the neutral kaons polarizability problem.

In the case of K+K− mesons production the Coulomb final state interaction is to be
taken into account:

dσ0(s)

dΩ−
=
α2β3K
4s
sin2 θ|FK(s)|2 Z

1− exp(−Z) , (3.4)

Z =
2πα

v
, v = 2

√
s− 4m2K
s

(
1 +
s− 4m2K
s

)−1
,

9
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where v is the relative velocity of kaons [14]. When s = m2φ we have v ≈ 0.5. Because
we consider the energy range close to φ mass one may choose the maximal energy of the

soft photon as

ω ≤ ∆E = mφ − 2mK � mK , ∆ ≡ ∆E
mK
≈ 1
25
. (3.5)

If required, more precise formulæ for charge–even and charge–odd parts of cross-section

may be obtained from the ones for charged pions production process with the replacement

β → βK .

4 Conclusions

Thus, we presented differential cross-sections to be integrated in concrete experimental

conditions. The formulæ are good as for semi–analytical integration, as well as for the

creation of a Monte Carlo generator [12]. The idea of our approach was to separate

the contributions due to 2 → 2 like processes and 2 → 3 like ones. The compensating
terms allow us to eliminate the dependence on auxiliary parameters in both contributions

separately. In the same approach we had considered in paper [4] the processes of large-

angle Bhabha scattering and electron-positron annihilation into muons and photons.

Note that all presented formulæ are valid only for large angle processes. Indeed, in

the region of very small angles θ ≈ me/ε of final particles with respect to the beam
directions there are contributions of double logarithmic approximation [9]. These small

angle regions give the main part of the total cross-section in higher orders. We suppose

that this kinematics is rejected by experimental cuts.

Numerical computations were done in the

Figure 1: Radiative corrections to the diffe-

rential cross-section of charged pion produc-

tion in percent as functions of c.

case of pion production. In Fig. 1 we give

the values of radiative corrections normalized

by the Born differential cross-section. The

dashed line represents the correction in the

leading logarithmic approximation with the

K-factor included (according to the first term
of Eq. (2.21)). The solid line shows the re-

sulting total values of the corrections after

adding of large-angle photon emission (with

the compensators). We used the following set

of parameters: the energy threshold for pion

registration ∆1 = yth = 0.5, the detector an-

gular acceptance 10◦ < θ± < 170◦, the beam
c.m.s. energy ε = 0.51 GeV. The peaks of RC

for the forward and backward directions are

due to rapid falling of the Born cross-section

there.

10



J
H
E
P
1
0
(
1
9
9
7
)
0
0
6

The second Figure shows the compensation

Figure 2: An illustration of the cancella-

tion of the dependence on ∆ and θ0.

of auxiliary parameters.

The value of σ(2) is shown by the solid line.

It has to be summed with C(2) which is drawn

by middle–dashed line. The value of σ(3) is

shown by the long–dashed line, and has to

be summed with C(3) drawn with the short–

dashed line. The parameters for Fig. 2 are:

∆1 = 0.5, ∆ = 0.01, θ0 = 0.01, other param-

eters as in Fig. 1. For these numerical illus-

trations we did not take into account the pion

form factor.

The precision of our results is defined by

the omitted contributions. As concerns pure

QED terms, the corresponding uncertainty is

defined by unknown coefficients before the fol-

lowing terms:

(
α

π

)2
L ≈ 10−4,

(
α

π

)2
≈ 10−5,

α

π

m2e
s
L2 ≈ 10−7, α

π
θ20 ln(

4

θ20
) ≈ 10−5,

α

π

(
me
εθ0

)2
. (4.1)

We estimate the unknown coefficient1 and derive the theoretical uncertainty of our

calculations for these three processes to be 0.2%. Some additional uncertainty is due

to precision of the form factor determination in an experiment. There are also some

model–dependent contributions due to different hadronic intermediate states, which are

far beyond the scope of this publication.
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Appendix

Pion and kaon form factors are supposed to have the form Fi(s) = (1−Π(s))−1Fi(s), where
the factors Fπ,LS,K(s) (unknown theoretically) take into account the strong interactions
between hadrons in the final state. We put here the expressions for leptonic and hadronic

contributions into vacuum polarization operator Π(s):

Π(s) = Πl(s) + Πh(s), (A.1)

Πl(s) =
α

π
Π1(s) +

(
α

π

)2
Π2(s) +

(
α

π

)3
Π3(s) + . . .

Πh(s) =
s

4πα

[
PV

∞∫
4m2π

σe
+e−→hadrons(s′)
s′ − s ds′ − iπσe+e−→hadrons(s)

]
.

The first order leptonic contribution is well known [1]:

Π1(s) =
1

3
L− 5
9
+ f(xµ) + f(xτ )− iπ

[
1

3
+ φ(xµ)Θ(1− xµ) + φ(xτ )Θ(1− xτ )

]
, (A.2)

where

f(x) =

−
5
9
− x
3
+ 1
6
(2 + x)

√
1− x ln

(
1+
√
1−x

1−√1−x
)
for x ≤ 1,

−5
9
− x
3
+ 1
6
(2 + x)

√
1− x atan

(
1√
x−1

)
for x > 1,

φ(x) =
1

6
(2 + x)

√
1− x, xµ,τ =

4m2µ,τ
s
.

In the second order it is enough to take only the logarithmic term from the electron

contribution

Π2(s) =
1

4
(L− iπ) + ζ(3)− 5

24
. (A.3)

Here we present also a theoretical estimate for the contribution to the vacuum po-

larization operator due to φ meson in the energy region close to the resonance
√
s ≈

mφ ≈ 1020 GeV (see also [5, 17]). In this region one can write the cross-section of e+e−
annihilation into hadrons as follows:

σh(s) =
12πBeeΓ

2
φ

(s−m2φ)2 +m2φΓ2φ
, (A.4)

where Bee is the branching ratio of the decay φ → e+e−, quantity Γφ is the total width
of the meson. For the hadronic part of vacuum polarization connected with φ meson we

obtain:

Πh(s) = Πφ(s) + Πh′(s), (A.5)

where Πh′(s) includes other hadronic contributions [15]. The contribution Πφ(s) is es-

sential only in the region mφ − nΓφ < √s < mφ + nΓφ, n ∼ 1. It has the following
form:

Πφ(s) =
3Bee
α

Γφ
mφ

(
s
m2
φ
− 1

)
(
Γφ
mφ

)2
+
(
s
m2
φ
− 1

)2 , Bee ≈ 3.09 · 10−4. (A.6)
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Erratum

The following changes of the text are in order:

Formula (2.5) should read:

ReF (1)π (s) = 1 +
α

π

{(
ln
mπ

λ
− 1

)(
1− 1 + β

2

2β
lβ

)
+

+
1 + β2

2β

[
2ξ2 − 1

4
l2β + lβ ln

1 + β

2β
+ Li2

(
1− β
1 + β

)]}
.

The expression b(s) in (2.5) should read:

b(s) = −1 + 1− β
2β
ρ+
2 + β2

β
ln
1 + β

2
+

+
1 + β2

2β

[
ρ+ ξ2 + lβ ln

1 + β

2β2
+ 2Li2

(
1− β
1 + β

)]
.

In the formula (2.19) the last line should be:

P (2)(z) =

1∫
z

dt

t
P (1)(t)P (1)

(
z

t

)
.

In formula (A.1) the last line should be:

Πh(s) =
s

4π2α

PV ∞∫
4m2π

σe
+e−→hadrons(s′)
s− s′ ds′ − iπσe+e−→hadrons(s)

 .
The function f(x) in (A.2) should read

f(x) =

 −
5
9
− x
3
+ 1
6
(2 + x)

√
1− x ln 1+

√
1−x

1−√1−x for x ≤ 1 ,
−5
9
− x
3
+ 1
3
(2 + x)

√
x− 1 arctan 1√

x−1 for x > 1 .

The expression (A.6) should read

ReΠφ(s) =
3Bee
α

Γφ
mφ

(
s
m2
φ

− 1
)

(
Γφ
mφ

)2
+
(
s
m2
φ
− 1

)2 , Bee ≈ 3.09 · 10−4.
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